World of IoT – Part 4
 

Just a recap, in my previous post, I had taken a deep dive into the growth and trends in the IoT space. This will be the concluding post for this series where we will discuss the Industries where IoTs have been successfully implemented.

According to Internet of Things spending data and forecasts, published early 2017 by IDC, the 3 main industries in terms of IoT spending in 2016 were, respectively, manufacturing, transportation and utilities. Consumer Internet of Things spending ranked fourth.

While globally in the period until 2020, manufacturing will remain the major industry (except in Western-Europe) there will be global changes in this top 3. Among the fastest growing industries in the period until 2020 are insurance, healthcare, retail, consumer and, as mentioned, cross-industry initiatives.

Obviously, there is a difference between Internet of Things spend and number of Internet of Things projects.

A report by IoT Analytics, really a list of 640 real-life Internet of Things projects, indicates that from the perspective of number of projects connected industry ranks first but is closely followed by smart city implementations (where we mentioned the report), which rank second.

  1. Internet of Things in MANUFACTURING

The Manufacturing industry has always taken the lead in the implementation of IoT, given the origins of IoT i.e., RFID. Hence the most early typical use cases have kept this industry in the lead but not for long. In 2015, it was estimated that there were 307 million installed units in the manufacturing industry where systems with sensors have always been embedded into manufacturing and the automation processes. And that it would reach $98.8 billion by 2018 in manufacturing operations through efficiency optimization and connecting the automated areas. By and large the 3 top IoT use case in this industry are listed below.

A majority of manufacturers has deployed devices to collect, analyze/measure and act upon data. More than 34.6 percent of these companies had already implemented devices and sensors to gather this data and another 9.6 percent were about to implement IoT devices within a year. Only 24 percent from manufacturing industry had no plans to implement devices to collect, analyze and act upon data.

Retailers are working with the Internet of Things for several innovative and immersive approaches, ranging from virtual closets and self-checkouts to smart shelves (inventory accuracy) and connected vending machines.

  1. The Internet of Things in the RETAIL business

Retail is moving up fast, both in operations and customer-facing circumstances. The emphasis is primarily on efforts to digitize the consumer experience. It is mainly in the optimization of processes and of logistics that the Internet of Things offers immediate benefits to retailers. However, obviously the customer-facing and inventory-related aspects matter a lot too. The use of the Internet of Things in retail, among others, changes customer experience, leads to better customer insights, enables new collaborations and business models and further blurs the line between digital and physical in an in-store context.

Retailers are working with the Internet of Things for several innovative and immersive approaches, ranging from virtual closets and self-checkouts to smart shelves (inventory accuracy) and connected vending machines.

 

  1. The Internet of Things in GOVERNMENT AND CITIES

The Internet of Things is already used across several government activities and layers the sector is a very vast ecosystem and so are the many IoTs use cases in government. Probably the best-known usage of the Internet of Things in a government context concerns smart cities, in reality mainly smart city applications.

Smart city projects are what people hear about most and they get a lot of attention, among others because smart city applications are close to the daily lives of residents. Another reason why smart cities are often mentioned is that defacto smart city projects account for a big portion of Internet of Things deployments. Think about smart waste management (often a local matter), smart parking and environment monitoring.

Another area where we see the Internet of Things popping up is in citizen-facing public services. To a large extent smart city uses cases overlap with Internet of Things use cases in public services as one of the key tasks of a city is to serve the citizens. However, with public services we also go beyond the local/urban level but also includes smart energy. The degree of overlap depends on the way government services are organized in a particular country or region.

Improving citizen satisfaction is the main objective when considering or implementing the Internet of Things and other emerging technologies. Moreover, governments have a role in public health which can be enhanced by taking initiatives using the Internet of Things and in collaboration with private a state-sponsored partners. The same goes for public safety by the way. An example: collaborations between governments and insurance firms, leveraging telematics.

There are really hundreds of ways in which governments leverage and can leverage the Internet of Things to improve citizen experience, realize cost savings and, not to forget, generate new revenue streams.

The latter is quite important as many IoT projects have an impact on the funding of cities. A simple example: if you have a perfectly working smart parking solution in a city, you lose revenues for all the obvious reasons. So, it’s not just a matter of technologies but also of finding creative ways to turn enhanced citizen experience and citizen services in a global picture that is beneficial for everyone.

This takes time, planning and, as you can imagine, given the complexity of the government ecosystems, lots of alignment and coordination.

  1. The Internet of Things in BUILDING AND FACILITIES

     

The Internet of Things plays an important role in facility management, among others including data centers and smart buildings. The integration of IT (Information Technology) and OT (Operational Technology) plays an important role in this regard. Smart buildings are among the fastest growing cross-industry Internet of Things use cases in the period until 2020. Moreover, research indicates that data collection from buildings and other structures such as HVAC is already high. Last but not least, the market and evolutions of the BMS (Building Management System) are strongly impacted by the Internet of Things.

As the graphic below indicates, building management systems are becoming the centers of connectivity in a world of ever more endpoints in buildings, data analytics and actionable data play a key role in the evolution of building design, the connected building and the building management. As data collection from end point increases and next generation technologies make analytics and insights key in building systems, the connected BMS becomes a center of visualization, insights and actions.

Leveraging data from IoT-enabled facility assets, along with new Internet of Things platforms and facility management, with embedded capabilities, are leading to possibilities and benefits in building management areas such as:

  1. Smarter building security systems.
  2. Smarter Heating, ventilation and air conditioning (HVAC).
  3. Safer and more comfortable/healthy workplaces and buildings.
  4. Facility service quality optimization.
  5. Cost reductions, also in a green building context and in reduction of energy and water consumption.
  6. Better planning, operational efficiencies and enhanced resource allocation.
  7. Predictive maintenance and facility maintenance planning.
  8. Facility equipment control, configuration and regulation.
  9. Building management and building automation.
  10. Energy efficiency.
  11. Light and room control, comfort.

This list is far from comprehensive. As there are various sorts of buildings, each with their own challenges, infrastructure, technologies and most of all goals the landscape of building automation and management is very broad. In light and room control alone there are several controls such as blind controls, AC unit controls and literally dozens more.

The overall building automation and management landscape exists since far before the Internet of Things existed and is composed of various specializations, each with their standards (e.g. KNX in room control or BACnet in building management systems), certification programs for green buildings (ecology and energy/ecology regulations are key drivers) and for OT channel partners, technologies, networks, solutions and of course goals (the goal of an IoT-enabled office space, building or even meeting room is not the same of a hospital, even if there are always overlaps) .

However, with the Internet of Things these worlds are converging (and the standards already evolved to IP). This is a challenge and opportunity for the various players who all have their skill sets but rarely are able to offer the full picture.

5. The Internet of Things in HEALTHCARE

The Internet of Things has been present in healthcare in many forms and shapes since several years.

With remote healthcare monitoring and medical/hospital asset tracking, monitoring and maintenance as typical examples of these initial applications, the face of the Internet of Things in healthcare is changing fast.

Among the evolutions and drivers of the Internet of Things in healthcare:

  • An increasing consciousness and engagement from the consumer/patient side leads to new models, leveraging personal healthcare devices.
  • In a more integrated perspective, data from biosensors, wearables and monitors are used in real-time health systems and to save time for caregivers, detect patterns, be more aware and increase quality of care.
  • A broad range of innovations in fields such as smart pills and ever better delivery robots help in making healthcare more efficient and in saving resources, while also increasing quality of care.

This glorifies the importance of remote monitoring as the main use case in healthcare from a spending perspective until 2020 and ongoing growth in the years after that with some vital sign monitor devices, followed by ways how healthcare providers and healthcare payers plan to leverage the Internet of Things and, finally smart healthcare market growth data.

Some evolutions and forecasts in healthcare IoT in numbers:

 

 

 

 

 

 

  • Research shows that by 2019, 89% of all healthcare organizations will have adopted IoT technology
  • Among the main perceived benefits of healthcare IoT in the future are increased workforce productivity (57%), cost saving (57%), the creation of new business models (36%) and better collaboration with colleagues and patients (27%). The key benefits as reported in March 2017, however, are increased innovation (80%), visibility across the organization (76%) and cost savings (73%).
  • Other research shows that wearables will play a key role in health care plans, clinical IoT device data will free up clinician’s time significantly by 2019 (up to 30%) and there will be an increasing role for IoT-enabled biosensors and robots for medication and supplies delivery in hospitals by 2019.
  1. Internet of Things in UTILITIES AND ENERGY

Facing huge challenges and transformations for several reasons, utility firms have 299 million units installed according to Gartner. On top of utilities in the traditional sense there is also a lot happening in oil and gas and in energy.

Among the many typical use cases in utility firms: smart meters to improve efficiency in energy, from a household perspective (savings, better monitoring etc.) and a utility company perspective (billing, better processes and of course also dealing with natural resources in a more efficient way as they are not endless) and smart grids (which is about more than the Internet of Things).

  1. The Internet of Things in AUTOMOTIVE

Connected cars and all the other evolutions in the automotive industry are driving the market as well. Again, connected vehicles is the hottest US market in the overall picture. The connected car is one of those typical examples where the Consumer Internet of Things and Industrial Internet of Things overlap.

  1. The Internet of Things in OTHER SECTORS

Other industries include healthcare, transportation (where “smart devices” and sensors have existed for quite some time), logistics, agriculture and more. Add to that the consumer context and you know why it is such a hot topic. 

In summary the biggest drivers for IoT projects are listed below

This is the last blog in the series on the World of IoT and the related space. Hope you all enjoyed reading through the posts as much as I enjoyed putting them together. Stay tuned while I come back with yet another series on a technology topic

Please feel free to review my earlier series of posts 

World of IoT – Part 3
 

Just a recap, in my previous post, I had emphasized primarily over the key definitions and approaches to the Internet of Things. In this post, we are going to take a deep dive into the growth and trends in the IoT space.

The exact predictions regarding the size and evolution of the Internet of Things landscape tend to focus on the number of devices, appliances and other ‘things’ that are connected and the staggering growth of this volume of IP-enabled IoT devices, as well as the data they generate, with mind-blowing numbers for many years to come.

It makes it look as if the Internet of Things is still nowhere. Make no mistake though: it is already bigger than many believe and used in far more applications than those which are typically mentioned in mainstream media.

At the same time it is true that the increase of connected devices is staggering and accelerating. As we wrote the first edition of this Internet of Things guide, approximately each single hour a million new connections were made and there were about 5 to 6 billion different items connected to the Internet. By 2020, Cisco expected there would be 20 billion devices in the Internet of Things. Estimations for 2030 went up to a whopping 50 billion devices and some predictions were even more bullish, stating that by 2025 there will be up to 100 billion devices. The truth is that we will have to wait and see and that by the time we have written about recent predictions, new ones are already published.

Regardless of the exact numbers, one thing is clear: there is a LOT that can still be connected and it’s safe to assume we’ll probably reach the lower numbers of connected devices (20-30 billion) by 2020. Moreover, it’s not that much the growth of connected devices which matters but how they are used in the broader context of the Internet of Things whereby the intersection of connected and IP-enabled devices, big data (analytics), people, processes and purposeful projects affect several industries.

Also the data aspect is critical (again with mind-blowing forecasts) and how all this (big) data is analyzed, leveraged and turned into actions or actionable intelligence that creates enhanced customer experience, increased productivity, better processes, societal improvements, innovative models and all possible other benefits and outcomes. The impact of the IoT from a sheer data volume and digital universe perspective is amazing. And the Internet of Things will surpass mobile phones as the largest category of connected devices with 16 billion connected devices being IoT devices

There are numerous reasons for the growing attention for the Internet of Things. While you will often will read about the decreasing costs of storage, processing and material or the third platform with the cloud, big data, smart (mobile) technologies/devices, etc. there certainly is also a societal/people dimension with a strong consumer element.

A factor that has also contributed a lot to the rise of the Internet of Things, certainly in a context of the industrial Internet of Things and smart buildings, to name a few, is the convergence of IT and OT (Operational Technology) whereby sensors, actuators and so forth remove the barriers between these traditionally disconnected worlds.

As companies increasingly started investing in Internet of Things technologies and scalable Internet of Things deployments instead of just pilot projects it quickly became clear that the Internet of Things as a term covered completely different realities which have little in common. The majority of the Internet of Things hype focused on consumer-oriented devices such as wearables or smart home gadgets. Yet, we can’t repeat it enough, there is a huge difference between a personal fitness tracker and the usage of IoT in industrial markets such as manufacturing where the IoT takes center stage in the vision of Industry 4.0 (you can for instance think about IoT-connected or IoT-enabled devices such as large industrial robots or IoT logistics systems). That’s why a distinction was made between the Industrial Internet of Things and the Consumer Internet of Things to begin with.

The Industrial Internet of Things (IIoT): is ‘machines, computers and people enabling intelligent industrial operations using advanced data analytics for transformational business outcomes”. The main value and applications are found in the so-called Industrial Internet of Things or IIoT. In all honesty one of the main reasons why we started talking about the Industrial Internet of Things is to distinguish it from the more popular view on the Internet of Things as it has becoming increasingly used in recent years: that of the consumer Internet of Things or consumer electronics applications such as wearables in a connected context or smart home applications.

Typical use cases of the Industrial Internet of Things include smart lightning and smart traffic solutions in smart cities, intelligent machine applications, industrial control applications, factory floor use cases, condition monitoring, use cases in agriculture, smart grid applications and oil refinery applications.

It’s important to know that the Industrial Internet of Things is not just about saving costs and optimizing efficiency though. Companies also have the possibility to realize important transformations and can find new opportunities thanks to IIoT.

Those who can overcome the challenges, understand the benefits beyond the obvious and are able to deal with the industrial data challenge have golden opportunities to be innovative, create competitive benefits and even entirely new business models

The Consumer Internet of Things (CIoT)

About 5 years ago, consumers rarely saw what the Internet of Things would mean to their private lives. Today, they increasingly do: not just because they are are interested in technology but mainly because a range of new applications and connected devices has hit the market.

These devices and their possibilities are getting major attention on virtually every news outlet and website that covers technology. Wearables and smart watches, connected and smart home applications (with Google’s Nest being a popular one but certainly not the first): there are ample of you know the examples.

Although it is said that there is some technology fatigue appearing, the combination of applications in a consumer context and of technology fascination undoubtedly plays a role in the growing attention for the Internet of Things. That consumer fascination aspect comes on top of all the real-life possibilities as they start getting implemented and the contextual and technological realities, making the Internet of Things one of those many pervasive technological umbrella terms. Obviously, the Consumer Internet of Things market is not just driven by new technology fascination: their manufacturers push the market heavily as adoption means news business possibilities with a key role for data.

Below are some consumer electronics challenges to tackle first:

  • Smarter devices. Consumers are waiting for smarter generations of wearables and Internet of Things products, which are able to fulfil more functions without being too dependent from smartphones, as is the case with many of such devices today (think the first generations of smartwatches, which need a smartphone).
  • Security. Consumers don’t trust the Internet of Things yet, further strengthened by breaches and the coverage of these breaches. Moreover, it’s not just about the security of the devices but also about, among others, the security of low data communication protocols (and Internet of Things operating systems). An example: home automation standard Zigbee was proven easy to crack in November 2016.
  • Data and privacy. On top of security concerns, there are also concerns regarding data usage and privacy. The lack of trust in regards with data, privacy and security was already an issue before these breaches as we cover in our overview of the consumer electronics market evolutions.
  • A “compelling reason to buy”. The current devices which are categorized as Consumer Internet of Things appliances are still relatively expensive, “dumb” and hard to use. They also often lack a unique benefit that makes consumers massively buy them.

Whereas the focus of the Industrial Internet of Things is more on the benefits of applications, the Consumer Internet of Things is more about new and immersive customer-centric experiences. As mentioned, the Consumer Internet of Things typically is about smart wearables and smart home appliances but also about smart televisions, drones for consumer applications and a broad range of gadgets with Internet of Things connectivity.

The Internet of Everything (IoE) : brings together people, process, data and things to make networked connections more relevant and valuable than ever before-turning information into actions that create new capabilities, richer experiences, and unprecedented economic opportunity for businesses, individuals, and countries.

It focuses too much on the things and, as mentioned, is also very broadly used. It’s why some started distinguishing between the just mentioned Consumer Internet of Things and the Industrial Internet of Things.

Cisco and other prefer to use the term Internet of Everything, partially because of that umbrella term issue, partially because of the focus on things and partially to provide context to their views and offerings. But it’s not just marketing. The Internet of Everything or IoE depicts crucial aspects of IoT, namely people, data, things and processes; in other words: what makes a business. It’s this mix that matters. Moreover, the classic illustration of the Internet of Everything also made clear what, for instance, machine to machine or M2M is all about.

We’ve based ourselves on that classic depiction and added the dimensions of value and data analysis.

The relevant four key drivers for IoE are listed below

The Internet of Robotic Things (IoRT): is a concept where intelligent devices can monitor events, fuse sensor data from a variety of sources, use local and distributed intelligence to determine a best course of action, and then act to control or manipulate objects the physical world, and in some cases while physically moving through that world

One of the major characteristics of the Internet of Things is that it enables to build far stronger bridges between physical and digital (cyber) worlds. You see it in all IoT use case and in the Industrial Internet of Things you see it in what’s called the Cyber Physical Systems.

Yet, in most case, the focus is predominantly on the ‘cyber’ part whereby data from sensors essentially are leveraged to achieve a particular outcome with human interference and with a focus on data analytics and ‘cyber’ platforms. The way it happens, as ABI Research, who came up with the IoRT concept (which is real today) puts it is that essentially many applications and business models are built upon passive interaction. The Internet of Robotic Things market is expected to be valued at USD 21.44 Billion by 2022

By adding robotics to the equation and turning devices (robots) in really intelligent devices with embedded monitoring capabilities, the ability to add sensor data from other sources, local and distributed intelligence and the fusion of data and intelligence in order to allow these devices determine actions to take and have them take these actions, within a pre-defined scope, you have a device that can control/manipulate objects in the physical world.

With collaborative industrial robots), warehouse automation (Amazon Robotics) and even personal robots for cleaning and so forth make it more tangible. It’s still early days for the IoRT but the projects and realizations in this next stage are real. IoRT is not tied to the consumer and industrial IoT distinction, it’s ever-present.

The Internet of Things is used in various industries for numerous use cases which are typical for these industries. On top of that, there is a long list of Internet of Things use cases that is de facto cross-industry. As the Internet of Things is embraced and deployed at different speeds throughout consumer and industrial sectors, we take a look at some of the main industries and use cases which drive the Internet of Things market and Internet of Things projects.

Patterns and shifts in the vertical industry and Internet of Things use case spend

Note that the biggest and/or fastest growing use cases are not always related to the biggest and/or fastest growing industries in terms of Internet of Things spending.

While it is expected that in terms of use cases there will be high growth in consumer-related use cases such as personal wellness and smart home applications, the largest majority of spending is and will be done by enterprises. The main reasons for this shift are below

  • The costs and scope of the investments. A full-blown, enterprise-wide Internet of Things project in industrial settings such as manufacturing or logistics is far more expensive than a smart home implementation.
  • The shifts in the major Internet of Things use cases and industries. Remember that the Internet of Things mainly started as an industrial and business sector phenomenon. Industries with many existing physical assets can realize fast cost savings and efficiencies of scale. That’s why today they spend more in Internet of Things projects than consumer segments where we see more ‘new’ devices, rather than existing assets.
  • The Consumer Internet of Things catching up. As industries keep leading the current waves of Internet of Things spending until 2020, the fact that they started first and the advent of ever more consumer use cases and better (safer and more useful) solutions means that gradually consumer Internet of Things catches up with Industrial Internet of Things spending.
  • The rise of cross-industry Internet of Things applications and of scenarios whereby consumers and businesses meet each other in business-driven initiatives (for instance, the push for telematics in insurance, the push for smart meters in utilities) has a leveling effect on the adoption of the Internet of Things and on spending.

Stay tuned…. Part 4 of this foray, we will look into the 8 best example usages of the world of IoT.

Please feel free to review my earlier series of posts 

Authored by Venugopala krishna Kotipalli

World of IoT – Part 2
 

Just a recap, in my previous post, I had emphasized primarily over the world of IoT its origins and its common elements. In this post, we are going to dwell a little deeper on key definitions and approaches to the Internet of Things.

The Internet of Things is a reality in business and beyond

In several industries and companies, tangible value creation by leveraging the power of IoT is happening since quite some time as ample real-life IoT examples show. However, it will still take until the next decennium (2020 and beyond)before hype, roadblocks and misunderstandings regarding the Internet of Things fade away and uncertainties and challenges in several areas are solved. Moreover, a radical new approach to security will be needed.

Understanding IoT

To understand the benefits, value, context and even technologies of IoT it’s important to look at examples across various applications and industries. Although IoT is often approached as if it were a ‘thing’ as such one needs to understand the differences from an applications perspective in areas such as the Industrial Internet of Things, the Consumer Internet of Things and, beyond these ‘flavors’ and terms, the mentioned IoT use cases.

The usage of the Internet of Things happens at different speeds. IoT investments in the manufacturing industry, for instance, are far higher than in any other vertical industry and in the Consumer Internet of Things (CIoT) space concerned with manufacturing. This is poised to change by 2020 although globally manufacturing will still account for the majority of IoT spend (hardware, software, services and connectivity). The manufacturing industry, along with transportation and utilities are the three main IoT investment areas and are part of what is known as the Industrial Internet of Things.

Despite challenges, different speeds and the fast evolutions which we will see until the first years of the next decade, the Internet of Things is here.

In business and industry, there are thousands of Internet of Things use cases and real-life Internet of Things deployments across a variety of sectors with the three industries which we just mentioned accounting for a more than significant part of deployments and investments as the image on the right shows.

In the consumer space there are many thousands of devices and applications for a broad variety of purposes.

Predictions regarding the economic impact, sub segments, technologies and number of IoT-connected devices keep evolving as well.

Even if for most people the number of IoT devices is not a relevant metric, it’s the one that gets most attention. It has taken over two decades for the ‘concept’ of the Internet of Things to become a reality that is impacting and will impact many areas of business and society as we will see further. Despite being a reality, the Internet of Things in general is still in its early days,regardless of massive attention, impressive forecasts and numbers, and major evolution and deployments in many areas. However, if you look at the overall potential of IoT we are really just starting. Standards, technologies, maturity levels, devices and applications continue to evolve as various actors in the IoT ecosystem come up with platforms, new data analysis models and even evolving definitions and views to make IoT projects better and smarter. At the same time, challenges regarding regulation, security and data are being tackled – and even a universal IoT definition is still being debated.

The Internet of Things is a misnomer in two senses.

  1. First, the things don’t describe the essence of what it truly means and make it seem like a thing that is composed of connected things. On top of covering a vast connected ecosystem of myriad technologies, platforms and other components as such, the Internet of Things also fits in a technological and organization context whereby actionable intelligence is at the core of human and business value creation opportunities. The Internet of Things has no purpose nor means to exist without all these aspects.
  2. Secondly, after years of future visions around very old concepts and ideas such as connected refrigerators, the current fascination with the possibilities that arise as a result of connecting ‘things’, the ‘connected things’ aspect will move to the back and IoT will be seen just as we look at the Internet today: an obvious phenomenon of increased connectivity that is like electricity. What is behind it, the sensors, the devices, the protocols, the essential possibilities, will not matter, except to people who need to realize Internet of Things projects in real life and watch over the technology aspect within frameworks of regulations, meaning and security.

The question and evolution increasingly will not be about the Internet of Things but about the broader digital transformation economy picture with outcomes and integration in mind and de facto overlapping sets of technologies being a given.

What is IoT? A visual answer

To end this part on definitions and descriptions, here is a good illustration of the vast reality of the Internet of Things – and at the same time an illustration of what it means.

Internet of Things with IP: smart objects with an IP address which can sense (depending on use case, gather data on various parameters such as location, temperature, moisture level and dozens of more possibilities). This data gets sent for processing or analyzed at the source.

Internet of People:  Think about everything you use to connect with the Internet, such as your smartphone. It’s in the meeting of this sphere and the Internet of Things that most Internet of Things consumer applications today get born. Several so-called Consumer IoT (CIoT) applications such as wearable can’t live without smartphones. Moreover, for several control and monitoring activities you’ll need some sort of device such as a tablet, for example in a smart home context.

Internet of Things without IP:  and do not belong to the Internet of Things. They exist since a long time, mainly in the sphere of industrial Internet and we see them migrate to the Industrial Internet of Things (IIoT). Replacing such devices or tagging them so they become IoT-enabled is a part of what happens in IIoT.

The definition of the Internet of Things is in evolution in several ways: 

  • Industry bodies are updating Internet of Things definitions and descriptions in a field that is still lacking standardization.
  • The market is evolving and changing views and definitions as well. Whether it concerns analysts or companies, which are very active in the IoT space: many of them have invented their own terms.
  • There is a shift in the way we think about the Internet of Things. You can define things based upon what they are and what they are not. You can also define them by focusing on their characteristics but the most important question to answer in a definition: why and how do we use “something”?
  • We look less at the ‘things’ and technologies of the Internet of Things and more at the broader reality and context in which the Internet of Things fits.

Approach to IOT Implementation

While the Internet of Things – and we weigh our words – as a ‘reality’ has benefits and consequences many can’t grasp yet, we need to change the narrative and look at IoT from the holistic perspective of:

  1. How it is connected with people, processes, data, business, innovation, meaning, etc.
  2. The outcomes and goals from an integrated view, with regards to ecosystems of value, of related technologies and of business and platform ecosystems.
  3. While most people think about IoT devices such as smart meters, smart home appliances, fitness trackers, smart light bulbs, smart alarm systems and, in business and industry, for example robots and cobots, connected industrial assets, smart street lighting or intelligent building controls, to name a few, the things that really matter in IoT, including these devices, contain several technological components, which make them function.
  4. There are obviously lots of parts in any IoT device: sensors, actuators, boards, antennas, chips, micro-electro-mechanical systems and so forth. We won’t go that deep and look at the most important ones: sensors and actuators.
  5. Both sensors and actuators are what is called transducers. A transducer converts a specific signal which comes in a specific form of energy into another signal in a different form of energy.
  6. Sensors convert signals in areas such as heat, humidity, pressure, presence of gases, pressure, acceleration and so forth into a digital signal that gets sent to a control and/or data aggregation system such as a sensor hub or gateway. They are the start of all IoT data capture and thus must be accurate.
  7. The data which are a result of the sensing and converting of any given state or change of state in temperature, presence of gases, location and so forth usually go from the sensor hub or IoT gateway to the cloud or a data center. However, a lot of IoT data processing and preparation can happen close to the devices.
  8. Actuators in a sense are the opposite of sensors. They receive a signal or feel a force or change of state which makes them set in motion an operation in the physical world. Examples include the switching on of sprinklers when heat is detected, turning off heating and ventilation systems. Actuators are what enable semi-autonomous or autonomous decisions take place in the physical part of the cyber-physical system.
  9. The data received by IoT actuators are digital (electric) in nature and include a control system. The instructions get turned into another type of signal and energy, from switching things on or off, rotations, pressure and so forth. Typically actuators then also report data back so the taken action is known and, combined with other data, can be used for more insights, analysis or simply alerts.
  10. The combination of smart sensors and actuators is what really makes IoT fulfill many real-life applications.

IoT gateways

Function as bridges between the ‘things’ of the Internet of Things, including the data they generate through sensors on one hand and networks, cloud, IoT platforms, data centers, and ultimately applications leveraging this and other (aggregated and analyzed) data, on the other hand. They play an important role in the encryption, decryption, pre-processing and even analysis of data. They function as intelligent bridges with ever more types and features.

IoT gateways are hardware, software or a mix of both. There are several types of IoT gateways whereby the functions and possibilities they offer as said increase. This is because there are ever more IoT devices, an increasing volume of IoT data and, last but not least, a shift in the way data gets analyzed to the edge as previously explained. If you have more data and more complex and diverse ways to leverage more data and build IoT projects this means that your whole technology environment changes to deal with various IoT workloads where it fits best. And, thus, IoT gateways are moving beyond their initial scope as some sort of filter and bridge on the intersection of IoT devices and data on one hand and the networks, cloud services or data centers where they usually get stored and/or analyzed. A typical ‘newer’ form of IoT gateways is an edge gateway. This has to do with the mentioned rise of edge computing and thus analysis BEFORE the cloud, network or data center.

Connectivity and network technologies

Time for a look at the Internet of Things connectivity aspect. In order to transmit data between devices and from devices to platforms, the cloud or any other destination, network technologies are needed.

In some applications, for instance in smart home solutions, this is relatively easy as there are several general and several proprietary connectivity solutions in typically rather simple use cases.

Connectivity is traditionally divided into solutions for PAN (Personal Area Network), LAN (Local Area Network), WAN (Wide Area Network), MAN (Metropolitan Area Network) and (less) in NAN (Neighborhood Area Network).

These are concepts we know from computer networking in general since quite some years. To connect from a PAN to a LAN and a WAN or, let’s say, the Internet you need a gateway.

The rise of LPWAN companies such as Semtech (LoRA), Sigfox and so forth needs to be seen from that perspective whereby the focus was on having enough bandwidth, low power consumption and so forth at cheaper prices than existing possibilities. Building specific networks, among others, what made non-cellular LPWAN solutions successful.

Today that landscape continues to evolve and change. New 3GPP standards, the shift to 4G LTE in the industry and beyond are some of these evolution. Wireless IoT protocols and technologies are expected to become more important in the IoT network layer overall. However, it is and remains a reality that keeps changing.

Stay tuned…. Part 3 of this foray, we will look into the market growth and trends in the world of IoT.

Please feel free to review my earlier series of posts 

Authored by Venugopala krishna Kotipalli

World of IoT – Part 1
 

In this series of posts, I will emphasize primarily over the world of IoT (Internet of Things). We’ll start with looking at the origins of IoT, its common elements and approaches, look at the market growth and trends for IoT in the industry. We will also touch base with the newer extensions of IoT like IIoT (Industrial IoT), CIoT (Consumer IoT), IoE (Internet of Everything) and IoRT (Internet of Robotic things).

IoT is an umbrella term for a broad range of underlying technologies and services depending upon the use cases and in turn are part of a broader technology ecosystem which includes related technologies such as AI, cloud computing, cyber security, analytics, big data, various connectivity/communication technologies, digital twin simulation, Augmented reality and virtual Reality, block chain and more.

The Origin

The idea of the Internet of Things goes back quite some time. The RFID has been a key development towards the Internet of Things and the term Internet of Things has been coined in an RFID context (and NFC), whereby we used RFID to track items in various operations such as supply chain management and logistics.

The roots and origin of the Internet of Things go beyond just RFID. Think about machine-to-machine (M2M) networks. Or think about ATMs (automated teller machine or cash machines), which are connected to interbank networks, just as the point of sales terminals where you pay with your ATM cards. M2M solutions for ATMs have existed for a long time, just as RFID. These earlier forms of networks, connected devices and data are where the Internet of Things comes from. Yet, it’s not the Internet of Things.

The Role and Impact of RFID

In the nineties, technologies such as RFID, sensors and a few wireless innovations led to several applications in the connecting of devices and “things”. Most real-life implementations of RFID in those days happened in logistics like warehouses and the supply chain in general. However, there were many challenges and hurdles to overcome (mainly warehousing and industrial logistics as RFID was still expensive).

An example of an RFID application – electronic toll collection. The use of RFID became popular in areas beyond logistics and supply chain management: from public transport, identification (from pets to people), electronic toll collection (see image), access control and authentication, traffic monitoring, retail outdoor advertising. That growing usage was, among others, driven by the decreasing cost of RFID tags, increasing standardization and NFC(Near Field Communication).

Journey of RFID to IoT

The possibility of tagging, tracking, connecting and “reading” and analyzing data from objects would become known as the Internet of Things around the beginning of this Millennium.

It was obvious that the connection of the types of “things” and applications – as we saw them in RFID, NFCs – with the Internet would change a lot. It might surprise you but the concepts of connected refrigerators, telling you that you need to buy milk, the concept of what is now known as smart cities and the vision of an immersive shopping experience (without bar code scanning and leveraging smart real-time information obtained via connected devices and goods) go back since before the term Internet of Things even existed. Th attention for IoT in numerous other areas without a doubt has led to the grown attention for it as you’ll read further.

Coining of IoT Term

According to the large majority of sources, the term Internet of Things was coined in 1999 by Kevin Ashton at MIT.

RFID existed years before talked about the Internet of Things as a system, connecting the physical world and the Internet via omni-present sensors. Team there wanted to solve a challenge as wired reports: empty shelves for a specific product. When shelves are empty, obviously no one can buy what’s supposed to be there. It’s a typical problem of logistics and supply chain. The solution was found in RFID tags, which were still far too expensive to be able to put them on each product. Once the benefit was realized, there were many who invested in the expensive RFIDs to derive the benefits. The rest is a standard system, solving miniaturization challenges, lowering RFID tags prices and…history.

Definition of IoT

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.

Physical devices are either designed for the Internet of Things or are assets, including living beings, which are equiped with data sensing and transmitting electronics. Beyond this endpoint dimension with devices, sensors, actuators and communication systems, the Internet of Things is also used to describe what is effectively done with the data acquired from connected things.

The Internet of Things describes a range of applications, protocols, standards, architectures and data acquisition and analysis technologies whereby devices and items (appliances, clothes, animals,….) which are equipped with sensors, specifically designed software and /or other digital and electronical systems, are connected to the Internet and/or other networks via a unique IP address or URI, with a societal, industrial, business and/or human purpose in mind. As you can read below, data and how they are acquired, analyzed and combined into information value chains and benefits are key in it. In fact, the true value of the Internet of Things lies in the ways it enables to leverage entirely new sources and types of data for entirely new business models, insights, forms of engagement, and ways of living and societal improvements

The Internet of Things is not a thing. Data which is acquired, submitted, processed or sent to devices, in most cases travels across the Internet, fixed lines, across cloud ecosystems or via (tailored) wireless connectivity technologies which are developed for specific applications of IoT

Bridging digital, physical and human spheres through networks, connected processes and data, turned into knowledge and action, is an essential aspect in this equation. In recent years the focus in the Internet of Things has shifted from the pure aspect of connecting devices and gathering data to this interconnection of devices, data, business goals, people and processes, certainly in IIoT.

Elements of IoT

Most IoT definitions have several aspects in common. Here are the elements they have in common:

  1. Internet of Things Connectivity

All IoT definitions include the connectivity and network aspect: a network of things, devices, sensors, objects and/or assets, depending on the source. It’s pretty clear that a dimension of networks and connectedness, we would even say hyper-connectedness, needs to be present in any decent IoT definition.

2. The Things in the Internet of Things

IoT-enabled assets, devices, physical objects, sensors, anything connected to the physical world, appliances, endpoints, the list goes on. They are all terms to describe what an essential part of a network of things. Some add words such as smart or intelligent to the devices. Let’s say that they contain technology that grants them an additional capability of ‘doing something’: measuring temperature or moisture levels, capturing location data, sensing movement or capturing any other form of action and context that can be captured and turned into data.

3. The Internet of Things and Data

This is part of that intelligent notion but it also brings us far closer to the essence. You can define the Internet of Things by simply describing all characteristics (“what it is”) but you also need to look at its purpose (“the why”).

4. Communication in the Internet of Things

Data as such is maybe not without value but it sure is without meaning unless it is used for a purpose and it is turned into meaning, insights, intelligence and actions. The data gathered and sensed by IoT devices needs to be communicated in order to even start turning it into actionable information, let alone knowledge, insights, wisdom or actions.

5. Internet of Things, Intelligence and action

We just touched upon this aspect. However, in most definitions we see that intelligence is attributed to just the network(s) and/or the devices. While we certainly need, for instance, ‘intelligent networking technologies’ in many cases and while connected devices have a capacity of action, the real intelligence and action sits in the analysis of the data and the smart usage of this data to solve a challenge, create a competitive benefit, automate a process, improve something, whatever possible action our IoT solution wants to tackle.

6. Automation

There is always a degree of automation, no matter the scope of the project or the type of Internet of Things application. Most IoT applications are essentially all about automation. And that often comes with costs and benefits. Industrial automation, business process automation or the automatic updating of software: it all plays a role, depending on the context.

7. Ecosystem

Meaning and hyper-connectedness is what we miss in many answers on the questions regarding what the Internet of Things is. We stay too descriptive and focused on just the technologies and don’t look at purpose and intelligent action enough

While the above mentioned elements come back in all Internet of Things definitions there are a few we miss that are essential in the evolving views regarding the Internet of Things as it moves from devices and data to outcomes and actionable intelligence, and ultimately to a hyper-connected world of digital transformation (DX) and business.

The aspect of hyper-connectivity and integration often lacks. In a context of a reality whereby devices, people, processes and information are more interconnected than ever before; an Internet of Things definition and approach just needs to mention these aspects as the Internet of Things is part of something broader and is more about data, meaning and purpose than about objects. A key element of that hyper-connectivity in the Internet of Things sphere is that sometimes mentioned ongoing bridging of digital and physical environments, along with human environments, processes and data as the glue, enabler and condition to create value when properly used for connected purposes.

Then there is also the possibility to create new ecosystems where connected device usage by groups of people can lead to new applications and forms of community ecosystems. Last but not least and we’ve mentioned this often before: no Internet of Things without security.

Stay tuned…. Part 2 of this foray, we will look into key definitions and approaches for IoT.

Please feel free to review my earlier series of posts